Evolving multi-dimensional wavelet neural networks for classification using Cartesian Genetic Programming
نویسندگان
چکیده
منابع مشابه
Fast learning neural networks using Cartesian genetic programming
A fast learning neuroevolutionary algorithm for both feedforward and recurrent networks is proposed. The method is inspired by the well known and highly effective Cartesian genetic programming (CGP) technique. The proposed method is called the CGP-based Artificial Neural Network (CGPANN). The basic idea is to replace each computational node in CGP with an artificial neuron, thus producing an ar...
متن کاملEvolving neural networks using a genetic algorithm for heartbeat classification.
This study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we ...
متن کاملEvolving Wavelet Neural Networks for Breast Cancer Classification
Digital Mammograms are x-ray images of the breast and one of the preferred early detection methods for breast cancer. However, mammograms are still difficult to interpret, and associated with this problem is a high percentage of unnecessary biopsies, misdiagnoses and late detections. The focus of this research is to use neuroevolutionary mechanisms for detecting breast cancer from mammographic ...
متن کاملTyped Cartesian Genetic Programming for Image Classification
This paper introduces an extension to Cartesian Genetic Programming (CGP), aimed at image classification problems. Individuals in the population consist of two layers of functions: image processing functions, and traditional mathematical functions. Information can be passed between these layers, and the final result can either be an image or a numerical value. This has been applied to image cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2017
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2017.03.048